Windows. Железо. Браузеры. Безопасность. Операционные системы

6 ядерные процессоры amd phenom ii x6. AMD Phenom II X6 с числом ядер от одного до шести: тесты масштабируемости. Обработка изображения в VSO Image Resizer

шесть ядер, технология Turbo CORE и демократичная цена

Чуть менее, чем пять лет назад, мы были свидетелями выпуска первых двухъядерных процессоров. Споров вокруг них на тематических форумах было предостаточно, но корень дискуссии о целесообразности перехода состоял в том, что первые двухъядерники ограничивались меньшей частотой, нежели их одноядерные прототипы. Таким образом, в тех программах, где два ядра не задействовались, производительность оказывалась ниже. А поскольку предлагалось второе ядро отнюдь не в качестве бесплатного приложения, а весьма недешево, скептики отмечали, что время многоядерности еще не наступило и надо погодить.

И вот сейчас AMD предлагает уже шесть процессорных ядер, размещенных на одном кристалле и при этом обещает не оставить поводов для дискуссии на тему что лучше: быть богатым или здоровым. Поскольку новые процессоры должны быть, как минимум, не медленнее своих четырехъядерных предшественников, даже в приложениях не имеющих ничего общего с многопоточностью, и пропорционально быстрее - в многопоточных. А ценник чуть ниже $300 за старшую модель явно указывает на то, что принадлежать новая линейка будет к категории продуктов, которую принято «не только пробовать, но и есть».

Первоначально в линейке будут два процессора: Phenom II X6 1090T с номинальной частотой 3,2 ГГц, который мы и рассмотрим в этой статье, и Phenom II X6 1055T с частотой 2,8 ГГц. Рекомендованная цена для старшей модели составляет $289, а младшей $199. Оба процессора имеют уровень TDP в пределах 125 Вт, устанавливаются на платы с разъемом Socket AM3, а также обратно совместимы с AM2+ и даже AM2, но здесь, конечно, многое зависит от расторопности компаний-производителей плат, поскольку необходимы соответствующие обновления BIOS. Помимо наличия двух дополнительных ядер, отличия новинок от моделей из ряда Phenom II X4 900-ой серии состоят в поддержке технологии Turbo CORE, на принципе работы которой мы остановимся чуть подробнее.

В первом приближении AMD Turbo CORE можно назвать аналогом Intel Turbo Boost, реализованной в процессорах Core i7, поскольку она также обеспечивает подъем частоты отдельных ядер при работе в приложениях, не оптимизированных под многопоточность, то есть не использующих все вычислительные ядра процессора. Однако алгоритм управления отличается. Если в процессорах Intel, как мы знаем, разогнанными могут оказаться все 4 ядра, а допустимость разгона определяется встроенным в процессор датчиком, измеряющим фактическую потребляемую мощность. То решение AMD предполагает непременное отключение неиспользуемых ядер «в обмен» на разгон используемых. По умолчанию алгоритм таков: если нагруженными оказываются менее 4 ядер, три ядра переводятся в режим сна (C1), а три активных получают повышенную частоту. Величина повышения определяется моделью процессора, так у 1090T максимум составляет 3,6 ГГц, то есть на 400 МГц выше номинала, а у 1055T - до 3,2 ГГц. Определить в каком из двух режимов должен работать процессор является задачей BIOS, причем для того чтобы все работало, как задумано производителем, должны быть активированы энергосберегающие опции (Cool’n’Quiet и C1E), ведь при работе этой технологии происходит аналогичное переключение множителей для процессорных ядер, только в сторону повышения. Кстати, именно в таком режиме процессор и рекомендуется тестировать, что очень на руку пользователям, поскольку обычно тестеры отключают энергосберегающие опции для получения максимального результата, но в реальных условиях большинство пользователей держат эти функции включенными. Поэтому теперь результаты тестов будут еще ближе к реальному положению дел.

Как нетрудно догадаться, технология, задействующая штатные механизмы управления множителями, должна без каких-либо ограничений поддаваться настройке. Что мы и видим в новой версии AMD OverDrive. Пользователь может задать максимальную частоту и количество ядер, которые будут активны в режиме «буста». Например, если критичные для вас приложения умеют задействовать лишь два ядра, логично будет выбрать несимметричный режим и отправлять в режим сна четыре ядра, а двум активным поднять частоту, скажем, до 4 ГГц.

Поскольку речь зашла о разгоне, сразу скажем несколько слов о наших опытах в этой области. Подробно исследовать этот вопрос мы не успели, но тот факт, что на штатном напряжении и без каких-либо усилий, просто выставив повышенный множитель в BIOS, мы получили стабильные 4,2 ГГц для всех 6 ядер, очень даже вдохновляет!

Наконец, еще одна особенность, которую скорее можно назвать административной: для новых процессоров частота контроллера памяти (CPU NB) не является строго фиксированной, и скорее всего, будет привязана разработчиками BIOS к используемой частоте памяти (в автоматическом режиме). А выбирая этот параметр вручную, рекомендуется при стандартной частоте памяти (DDR3-1333) выбирать частоту CPU NB равную 2200 МГц, а для DDR3-1600 - 2400 МГц. Надо отметить, что и то, и другое выше, чем ранее использовавшаяся частота 2000 МГц.

Конфигурация тестовых стендов

Процессор Phenom II X4 965 Phenom II X6 1090T Core i7 930 Xeon X5680
Название ядра Deneb Thuban Bloomfield Gulftown
Технология пр-ва 45 нм 45 нм 45 нм 32 нм
Частота ядра (std/max), ГГц 3,4 3,2/3,6 2,8/3,06 3,33/3,6
Кол-во ядер (HT-потоков) 4 6 4 (8) 6 (12)
Кэш L1, I/D, КБ 64/64 64/64 32/32 32/32
Кэш L2, КБ 4 х 512 6 х 512 4 х 256 6 х 256
Кэш L3, КБ 6144 6144 8192 12288
Оперативная память DDR2-1066, DDR3-1333 DDR2-1066, DDR3-1333 DDR3-1066 DDR3-1333
Сокет AM2+/AM3 AM2+/AM3 LGA1366 LGA1366
TDP 125 Вт 125 Вт 130 Вт 130 Вт
Цена Н/Д(0) Н/Д(0) Н/Д() $1299()
  • жёсткий диск: Seagate 7200.11 (SATA-2);
  • кулер: Zalman CNPS9700;
  • видеокарта: PowerColor HD5870 1ГБ GDDR5;
  • блок питания: SeaSonic M12D 750 Вт.

Поскольку тестирование совпало с обновлением методики, набор процессоров для сравнения сведен к необходимому и достаточному минимуму. Естественно, интересно узнать, как будет выглядеть новый топ от AMD на фоне своего предшественника: старшей четырехъядерной модели Phenom II X4 965, а от Intel «нельзя обойтись» без примерно равного по цене конкурента (формально их двое: Core i7 860 и Core i7 930, чьи результаты едва ли сильно отличаются в виду равной тактовой частоты и прочих основных характеристик, но второй ближе по позиционированию и в данном случае актуальнее, ведь процессоры AMD мы тестируем на плате с топовым чипсетом, соответственно и от Intel честнее взять топовую платформу LGA1366). Ну и, конечно, законы жанра и прочего шоу-бизнеса требуют в данном случае наличия результатов недавно выпущенного шестиядерника от Intel. Но Core i7 980X в наличии не оказалось, поэтому в таблицах приведены результаты Xeon X5680, имеющего практически идентичные характеристики. Впрочем, конкурентами для рассматриваемого в этой статье процессора ни один из интеловских шестиядерников не является, уже по той причине, что на старшем шестиядернике от AMD можно собрать целый компьютер, уложившись в сумму, которая запрашивается за один лишь Core i7 980X.

Как обычно, результаты всех тестов в абсолютных величинах приведены в сводной таблице , а в статье используются относительные величины, обозначающие сколько процентов составляет производительность рассматриваемого процессора относительно «референсного», чьи результаты взяты за 100% (в роли референса выступает Athlon II X2 630, так что фактически по результатам можно также судить: насколько сильно рассматриваемые процессоры превосходят уровень современных середнячков). Тестирование

Сразу отметим, что в окончательную версию методики, которую мы будем использовать в текущем году, начиная со следующей статьи, возможно, будут включены еще тесты. В данном же случае представляем вниманию читателей своего рода бета-версию, что, кстати, очень сообразуется и с результатами этого тестирования, которые для нового процессора не выглядят как окончательные. Почему? Сейчас все расскажем.

3D-визуализация

Подгруппа интерактивных операций в среде программ 3D-моделирования оказалась единственной, где шестиядерная новинка от AMD уступила четырехъядернику Phenom II X4 965. Как нам хорошо известно, многопоточность в этих задачах до сих пор реализована крайне слабо, и, сразу надо отметить, что с обновлением версий самих программ до актуальных на сегодняшнй день никаких существенных перемен не произошло. Но почему, в таком случае, новому процессору не помог Turbo-режим? Скорее всего причины две: во-первых активно использовать только одно-два ядра и вовсе не использовать остальные ядра, это два разных утверждения, и вполне возможно, что какие-то нересурсоемкие процессы периодически назначаются свободным ядрам, не давая им перейти в пассивное состояние. Тем более, когда речь идет о достаточно сложных программных пакетах, как рассматриваемые в данном случае. А, во-вторых, и это наиболее вероятная причина, которая, скорее всего, не даст новому процессору продемонстрировать всю свою мощь прямо сейчас и в остальных подгруппах, состоит в не до конца отлаженном BIOS. Тем более, что мы вынуждены были использовать предрелизную версию. Вспомните первые тесты Core i7, особенно на примере 920-ой модели, которая поначалу по производительности угодила куда-то в середину линейки Core 2 Duo и была по этой причине воспринята весьма холодно. Но после шлифовки BIOS все стало на свои места, и это не удивительно, поскольку технологии подобные Turbo Boost напрямую зависят от логики управления.

А пока, если посмотреть на подробные результаты, можно отметить, что только в UGS NX новый процессор вышел вперед, хотя этот тест всегда был известен как чуть ли не однопоточный. Видимо, вот тут как раз и смог включиться как следует Turbo CORE? Результаты процессоров Intel в этом приложении получились подозрительно низкими, хотя мы несколько раз перепроверяли, но даже при визуальном сравнении двух стендов оказывалось, что на AMD-платформе тест ворочался явно быстрее и завершался раньше. Странно, поскольку раньше мы у этого теста подобного поведения не наблюдали, возможно так активно помешал Hyper-Threading...

3D-рендеринг

В рендеринге два дополнительных ядра задействуются во всех трех приложениях, составляющих эту подгруппу. Поэтому выигрыш шестиядерника у четырехъядерника с одинаковой архитектурой получается уверенным, хоть и не самым большим по абсолютной величине: далее мы увидим и более впечатляющие отрывы. Что касается сравнения с конкурентом, то шестиядерный Phenom лидирует в Lightwave и Maya, а четырехъядерный, он же восьмипоточный, Core i7 930 оказывается сильнее в 3dsmax. По совокупности: равенство.

Научно-инженерные вычисления

Здесь новому процессору в ряде тестов помогают дополнительные ядра, где-то явно включается «буст», но выигрыш у Phenom II X4 965 не столь существенный (по сути принципиальный отрыв лишь в Mathematica), и аналогичный предыдущему случаю паритет с конкурентом.

Графические редакторы

В этой подгруппе тестов полноценной многозадачностью располагает лишь Photoshop, причем он пытается задействовать и 6 ядер, но явно не во всех процедурах, поэтому Phenom II X6 1090T чуть-чуть не хватает, чтобы дотянуться до Core i7 930. А вот в ACDSee новый процессор получает ускорение довольно неожиданно. Вряд ли в новой версии появилась сразу столь эффективная многопоточность, скорее всего как раз помог Turbo-режим. А вот в двух оставшихся графических редакторах, от природы к многопоточности равнодушных, результаты новинки практически не отличаются от 965-ого, поэтому на итоговой диаграмме новый процессор занял промежуточное положение.

Архиваторы

Архиваторы и в мыслях не имеют пока намерений загрузить шесть ядер, поэтому преимущество нового процессора обеспечило включение Turbo CORE, и пока только в одном тесте (7-Zip). Да, да, снова явный запас для будущей оптимизации алгоритма включения этой технологии, более агрессивного что ли.

Компиляция

В компиляторе от Microsoft распараллеливание реализовано достаточно грамотно, поэтому новинка чувствует себя уверенно, в том числе выигрывает и у конкурента.

Java

Многоядерность работает и здесь, плюс еще сама среда сильнее благоволит к архитектуре процессоров AMD. В результате Phenom II X6 1090T смотрится пусть не королем, но вполне себе принцем.

Интернет-браузеры

А вот и новая подгруппа тестов, где будет тестироваться скорость исполнения Adobe Flash и JavaScript под управлением большинства распространенных браузеров: Internet Explorer, FireFox, Opera, Safari и Chrome. Результат усредняется.

Не столь большая разница, чтобы долго задумываться над ее происхождением. Но все же отметим, что 1090T формально выиграл у 965-ого и не менее формально проиграл 930-ому. Однако к адекватности теста претензий нет. И скорее всего он будет действительно интересным при тестировании мобильных или бюджетных процессоров для настольных ПК.

А вот безобидный JAVA-скрипт породил просто эпических масштабов картину, на тему адекватности которой все же придется предпринять дополнительное расследование, прежде чем использовать этот тест для подсчета общего балла по новой методике. В качестве гипотез на ум приходит как минимум три: либо действительно сам факт наличия шести ядер сбивает с толку браузеры, причем схожим образом от разных совершенно разработчиков, и они действительно так будут вести себя, выполняя JAVA-скрипты. Либо данный конкретный скрипт, используемый в тесте от Sun, обладает такой магической способностью погружать браузеры в прострацию. Либо метод подсчета в бенчмарке дает сбой при запуске на шестиядерниках. Дополнительная странность заключается в том, что виртуальную многопоточность в Core i7 930 тот же бенчмарк переваривает вполне пристойно.

Кодирование аудио

Кодирование аудио, наряду с растровой графикой, это еще одна подгруппа, удобная с точки зрения архитектуры современного семейства процессоров Intel, и соответственно, не выигрышная для AMD. Но в данном случае, хотя бы полноценно работает многопоточная оптимизация, и процессоры AMD могут подтянуться за счет большего количества ядер, что и демонстрирует 1090T.

Кодирование видео

Ну а в более разносторонней в плане запросов к ресурсам задаче кодирования видео (и что уж скрывать: более актуальной, поскольку даже небольшие ролики кодируются не моментально, в отличие от отдельно взятых аудиотреков или операций в графических редакторах) расстановка сил для Phenom II X6 1090T весьма благоприятна. Новинка выигрывает у конкурента в 5 из 6 тестов, а в XviD силы практически равны.

Игры

Как мы уже хорошо знаем, современные игры действительно умеют извлекать пользу из многоядерных процессоров. Но это наблюдается по мере наращивания числа ядер до 4 (причем больше трех ядер активно использует уже явное меньшинство игр). Формально есть возможность несколько разгрузить основные ядра за счет переноса вычислительных потоков, связанных с работой видеодрайвера, на дополнительные ядра. Но в реальности эффективно распоряжается шестью ядрами лишь одна игра, новая для нашей методики, точнее бенчмарк на основе известной шахматной программы Fritzchess. Ну а во всех остальных случаях Phenom II X4 965 набрал больше или столько же баллов, сколько и 1090T. И более того, есть даже игры, где многоядерность не только не помогает, но и отчасти мешает (как и виртуальная многопоточность от Intel). Например, в Colin McRae: DiRT 2 первое место среди всех рассматриваемых в этом обзоре процессоров оказалось как раз за Phenom II X4, второе занял Athlon II X4 630, а далее уже идут остальные. Но если Hyper-Threading можно лишь принудительно отключить, то в случае с Phenom II X6 как раз в таких случаях и должен вовсю работать Turbo CORE, причем с двойной эффективностью (и лишние ядра спят, а значит «не мешаются», и активные работают на повышенной частоте). Да и в остальных играх режим работы явно не был оптимальным. В общем, результат в игровой подгруппе может и должен быть лучше. С другой стороны, мы не использовали настройки Smart Profiles, а в случае с играми подстройка непосредственно под ту или иную игру может быть эффективнее универсального алгоритма реагирования из BIOS.

Выводы

Можно с уверенностью сказать, что Phenom II X6 1090T стоит своих денег и будет пользоваться спросом. И позиционирование на уровне Core i7 930, как подтверждает наша итоговая диаграмма, совершенно справедливо. Но как уже отмечалось в процессе тестирования, есть ощущение, что этот процессор, исходя из технических характеристик, может продемонстрировать более высокий результат. Если по мере отладки BIOS будет внедрен более активный алгоритм Turbo CORE, включающийся не только в ситуации полной пассивности ядер, ускорение будет наблюдаться в большем количестве приложений. С другой стороны, поскольку сама технология реализована поверх хорошо известного механизма динамического выбора множителя, пользователь имеет все возможности для самостоятельных экспериментов и оптимизации. Например, в играх наверняка лучше будет срабатывать «буст», если хотя бы просто выбрать несимметричный режим (4 активных, разгоняемых ядра при отключении 2 пассивных). Поэтому и мы, в свою очередь, тему не закрываем.


  • Приложения. Общее сравнение производительности процессоров
  • Введение

    После выхода на рынок процессора Phenom II X6 1090T BE у компании AMD появился шанс вернуть себе давно утраченные позиции в высшем ценовом сегменте процессоров. К этому предрасполагают шесть процессорных ядер, высокая тактовая частота 3200 МГц и технология Turbo Core, аналог интеловского Turbo Boost.

    В данном обзоре этот процессор будет всесторонне протестирован в хорошо зарекомендовавшем себя пакете "процессорозависимых" игр. По результатам станет ясно реальное позиционирование Phenom II X6 1090T BE на рынке игровых системных блоков.

    Противниками героя обзора стали старшие процессоры Intel Core i7 920 и Core i5 760, представитель отлично зарекомендовавшей себя серии Core i3 - Core i3 560, и младший собрат Phenom II X4 965 BE.

    Тестовая конфигурация

    Тесты проводились на следующих стендах:

    Стенд №1:

    • Материнская плата: ASRock P55 Extreme, BIOS v2.70
    • Оперативная память:

    Стенд №2:

    • Материнская плата: GigaByte GA-EX58-UD5, BIOS F12
    • Оперативная память: 3 x 2048 Мбайт DDR3 Corsair (Spec: 1600 МГц / 8-8-8-20-1t / 1.65 В)

    Стенд №3:

    • Материнская плата: GigaByte GA-890FXA-UD7, BIOS F4
    • Оперативная память: 2 x 2048 Мбайт DDR3 Corsair (Spec: 1600 МГц / 8-8-8-20-1t / 1.65 В)

    Процессоры:

    • Core i7 920 - 2660 @ 4300 МГц
    • Core i5 760 - 2800 @ 4000 МГц
    • Core i3 560 - 3330 @ 4400 МГц
    • Phenom II X6 1090Т BE - 3200 @ 4100 МГц
    • Phenom II X4 965 BE - 3400 @ 4000 МГц

    Остальные компоненты:

    • Видеокарта: GeForce GTX 480 1536 Мбайт - 700/1400/3696 МГц (Palit)
    • Система охлаждения CPU: Cooler Master V8 (~1100 об/мин)
    • Дисковая подсистема: SATA-II 500 Гбайт, WD 5000KS, 7200 об/мин, 16 Мбайт
    • Блок питания: Corsair TX 950 Ватт (штатный вентилятор: 140-мм на вдув)
    • Корпус: открытый тестовый стенд
    • Монитор: 23" Acer V233H (Wide LCD, 1920x1080 / 60 Гц)

    Программное обеспечение:

    • Операционная система: Windows 7 build 7600 RTM x64
    • Драйверы видеокарты: GeForce 260.89 WHQL

    Инструментарий и методика тестирования

    Для более наглядного сравнения процессоров все игры, используемые в качестве тестовых приложений, запускались в разрешениях 1280х1024 и 1920х1080.

    В следующих играх использовались средства измерения быстродействия (бенчмарки):

    • ARMA 2 (Бенчмарк №1)
    • Colin McRae DIRT 2 (Битва Battersea - Лондон)
    • Formula 1 2010 (Бенчмарк)
    • Grand Theft Auto 4 EFLC (Потерянные и Проклятые)
    • Lost Planet Colonies (Зона 1)
    • Mafia 2 (Бенчмарк)
    • R.U.S.E. (Бенчмарк)
    • World in Conflict: Soviet Assault (Побережье)

    В данных играх производительность измерялась с помощью утилит FRAPS v3.2.1 build 11425 и AutoHotkey v1.0.48.05:

    Во всех играх замерялись минимальные и средние значения FPS.

    В тестах, в которых отсутствовала возможность замера минимального FPS , это значение измерялось утилитой FRAPS.

    VSync при проведении тестов был отключен.

    Чтобы избежать ошибок и минимизировать погрешности измерений, все тесты производились по три - пять раз. При вычислении среднего FPS за итоговый результат бралось среднеарифметическое значение результатов всех прогонов (трех не "холостых"). В качестве минимального FPS выбиралось минимальное значение показателя по результатам трех прогонов.

    Технические характеристики процессоров Intel

    Технические характеристики процессоров AMD

    Разгон процессоров

    Процессоры разгонялись следующим образом. Стабильность разгона проверялась утилитой ОССТ 3.1.0 "Perestroika" путем получасового прогона процессора на максимальной матрице с принудительной 100% нагрузкой. Соглашусь с тем, что разгон тестируемых процессоров не является абсолютно стабильным, но для любой современной игры он подходит на все сто.

    Core i7 920

    Штатный режим. Тактовая частота 2660 МГц, базовая частота 133 МГц (133х20), частота DDR3 - 1600 МГц (133х12), напряжение питания 1.18 В, напряжение питания DDR3 - 1.65 В, Turbo Boost - включен.

    3400 МГц - базовая частота 170 МГц (170х20), частота DDR3 - 1700 МГц (170х10), напряжение питания 1.18 В, напряжение питания DDR3 - 1.65 В, Turbo Boost - включен.

    Процессор удалось разогнать до частоты 4300 МГц. Для этого базовая частота была поднята до 205 МГц (205х21), частота DDR3 - 1640 МГц (205х8), напряжение питания - до 1.35 В, напряжение питания DDR3 - 1.65 В, Turbo Boost - включен.

    Core i5 760

    Штатный режим. Тактовая частота 2800 МГц, базовая частота 133 МГц (133х21), частота DDR3 - 1333 МГц (133х10), напряжение питания 1.11 В, напряжение питания DDR3 - 1.65 В, Turbo Boost - включен.

    3400 МГц - базовая частота 162 МГц (162х21), частота DDR3 - 1620 МГц (162х10), напряжение питания 1.25 В, напряжение питания DDR3 - 1.65 В, Turbo Boost - включен.

    Процессор удалось разогнать до частоты 4000 МГц. Для этого базовая частота была поднята до 191 МГц (191х21), частота DDR3 - 1528 МГц (191х8), напряжение питания - до 1.38 В, напряжение питания DDR3 - 1.65 В, Turbo Boost - выключен.

    Core i3 560

    Штатный режим. Тактовая частота 3330 МГц, базовая частота 133 МГц (133х25), частота DDR3 - 1333 МГц (133х10), напряжение питания 1.15 В, напряжение питания DDR3 - 1.65 В.

    3400 МГц - базовая частота 136 МГц (136х25), частота DDR3 - 1360 МГц (136х10), напряжение питания 1.15 В, напряжение питания DDR3 - 1.65 В.

    Процессор удалось разогнать до частоты 4400 МГц. Для этого базовая частота была поднята до 176 МГц (176х25), частота DDR3 - 1760 МГц (176х10), напряжение питания - до 1.35 В, напряжение питания DDR3 - 1.65 В.

    Phenom II X6 1090Т BE

    Штатный режим. Тактовая частота 3200 МГц, частота системной шины 200 МГц (200х16), частота контроллера памяти 2000 МГц (200х10), частота DDR3 - 1600 МГц (200х8), напряжение питания ядра 1.3 В, напряжение питания DDR3 - 1.65 В, Turbo Core - включен.

    3400 МГц - частота шины 213 МГц (213х16), частота контроллера памяти 2130 МГц (213х10), частота DDR3 - 1704 МГц (213х8), напряжение питания ядра 1.38 В, напряжение питания DDR3 - 1.65 В, Turbo Core - включен.

    Процессор удалось разогнать до частоты 4100 МГц. Для этого частота шины была поднята до 256 МГц (256х16), контроллера памяти до 2560 МГц (256х10), напряжение питания ядра - до 1.5 В, напряжение питания DDR3 - 1.65 В, напряжение северного моста - на 0.1 В. Частота DDR3 составила 1705 МГц (256х6.66). Turbo Core - выключен.

    Phenom II X4 965 BE

    Штатный режим. Тактовая частота 3400 МГц, частота системной шины 200 МГц (200х17), частота контроллера памяти 2000 МГц (200х10), частота DDR3 - 1333 МГц (200х6.66), напряжение питания ядра 1.38 В, напряжение питания DDR3 - 1.65 В.

    Процессор удалось разогнать до частоты 4000 МГц. Для этого частота шины была поднята до 235 МГц (235х17), контроллера памяти до 2585 МГц (235х11), напряжение питания ядра - до 1.55 В, напряжение питания DDR3 - 1.65 В, напряжение северного моста - на 0.1 В. Частота DDR3 составила 1565 МГц (235х6.66).

    Перейдем непосредственно к тестам.

    Результаты тестов: сравнение производительности

    Arcania - Gothic 4 (Фишир)

    • Версия 1.1
    • DirectX 9
      • качество текстур - высоко
      • качество SSAO - высоко
      • качество света - высоко
      • качество теней - ультра
      • динамические тени - мир и геометрия
      • тени - мир и геометрия
      • качество персонажей - высоко
      • качество мира - высоко
      • качество частиц - высоко
      • экспозиция - вкл.
      • блики - вкл.
      • детализация лиц - вкл.
      • постобработка - вкл.

    1280 х 1024



    1920 х 1080

    Включите JavaScript, чтобы видеть графики
    минимальный и средний FPS

    Phenom II X6 1090T BE достойно стартовал в RPG Arcania - Gothic 4 - во всех режимах работы и обоих разрешениях он ни в чем не уступил в борьбе за первое место Core i7 920 и Core i5 760.

    ARMA 2 (Бенчмарк №1)

    • Версия 1.05.62017
    • DirectX 9
      • полноэкранное сглаживание (AA) 4
      • анизотропная фильтрация (AF) 16
      • дистанция обзора - максимальная
      • качество текстур - очень высокое
      • размер теней - 4096
      • качество ландшафта - очень высокое
      • качество объектов - очень высокое
      • качество теней - очень высокое
      • постобработка - очень высокая

    1280 х 1024

    Включите JavaScript, чтобы видеть графики

    1920 х 1080

    Включите JavaScript, чтобы видеть графики
    минимальный и средний FPS

    В шутере ARMA 2 в номинальном режиме работы Phenom II X6 1090T BE разделил лидирующую позицию с Phenom II X4 965 BE и четырехъядерными процессорами Intel, однако после разгона вперед вышли Core i7 920 и Core i5 760. В междоусобице с младшим сородичем лишние два ядра принесли новичку минимальное преимущество.

    Итак, что же представляет собой Phenom II X6? Индекс X6 прямо указывает на наличие шести вычислительных ядер. Новый флагман AMD изготовлен с соблюдением норм 45-нм техпроцесса (естественно, применяется технология «кремний на изоляторе» и иммерсионная литография). Объем кэша первого уровня (L1) составляет 128 Кбайт для каждого ядра (64 Кбайта данных + 64 Кбайта команд), объем кэша второго уровня (L2) – 512 Кбайт на ядро, объем общего кэша третьего уровня (L3) - 6 Мбайт. Взглянем на фото кристалла процессора:

    Знакомая картина: перед нами все тот же Deneb с парой «приклеенных» ядер. Объем общего кэша третьего уровня остался неизменным, суммарные объемы кэшей L1 и L2 подросли в полтора раза по понятным причинам. Таким образом, процессор представляет собой «подросший» Phenom II X4. К слову, специалисты Intel при создании своего «шестиядерника» Core i7 980 Xtreme пошли похожим путем, архитектура четрехъядерных процессоров i7 9xx была расширена на два ядра. Единственное отличие – i7 980 выпускается по 32-нм техпроцессу. То есть Intel продолжает придерживаться своей стратегии «Tic-Toc», в четные года вводя более тонкие техпроцессы, а в нечетные осваивая новые архитектуры. AMD пока не выводит на рынок 32-нм процессоры.

    Для тестирования пишущая братия получила процессоры Phenom II 1090T (флагман новой линейки) и Phenom II 1055T (модель среднего уровня), TDP обеих модификаций лежит в пределах 125 Вт. Частота процессора 1090T составляет 3,2-3,6 ГГц, частота 1055T 2,8-3,3 ГГц. К нам на тестирование попал флагманский процессор, рассмотреть его вы можете на фотографиях ниже.

    Индекс T в названии процессора указывает на применение технологии Turbo Core. «Странное» значение рабочей частоты, на которое уже наверняка обратили внимание читатели, вызвано именно применением этой технологии.

    Говоря кратко, суть такова: если приложение задействует менее чем 4 процессорных ядра (1, 2 или 3) их частоты автоматически повышаются, в то время как частоты остальных (неиспользуемых) ядер – напротив, снижаются. Система разгоняет нужные ядра и замедляет неиспользуемые при помощи изменения множителя. Помимо множителя, Turbo Core умеет повышать напряжение питания загруженных ядер, что обеспечивает стабильность на повышенных частотах. При использовании технологии TurboCore система автоматически держит процессор в рамках теплового пакета (в данном случае 125 Вт).

    Проиллюстрируем работу этой технологии на простом примере. Сначала откроем AMD OverDrive и активируем функцию TurboCore (окошко справа от основного), щелкните по картинке для увеличения:

    Как можно видеть на скриншоте выше, стандартный множитель нашего процессора равен 16 (слева). При использовании Turbo Сore он может быть увеличен до 18 (справа). При этом напряжение CPU VID на разгоняемых ядрах будет поднято до 1,45 В.

    Теперь откроем вкладку CPU Status в AMD Overdrive и проконтролируем множитель, частоту и напряжения CPU VID каждого ядра. Также на скриншоте ниже показано окно Fritz Chess Benchmark – удобного многопоточного теста, с помощью которого будет нагружаться процессор.

    Как мы можем видеть, нагрузка в данный момент практически отсутствует, соответственно процессор работает на пониженных частотах, множители всех ядер снижены. CPU VID везде составляет 1,35 В.

    Запустим тест в 6-поточном режиме. Все ядра загружены на 100%, множитель в этом случае составляет 16, напряжение CPU VID по-прежнему равняется 1,35 В. В данном случае Turbo Core не работает, так как загружено более чем 3 ядра. В настройках Fritz Chess Benchmark снизим количество исполняемых потоков до двух и перезапустим тест:

    Что и требовалось доказать. На приведенном скриншоте ядро, обозначенное как CPU 0, работает на сниженной частоте, в то время как ядра CPU 1,3 и 5 разогнаны в разной мере.

    Таким образом, технология Turbo Core добавляет процессору универсальности. В многопоточных приложениях высокую производительность Phenom II x6 обеспечат шесть вычислительных ядер, а в "однопоточных" – увеличенная частота. И все это, заметьте, в рамках одного и того же теплового пакета. Конечно, в связи с применение функции динамического разгона возникают и новые вопросы. Например, не будет ли уменьшаться производительность процессора в однопоточных задачах в связи с тем, что нагрузка не привязана жестко к конкретному ядру а "путешествует" по разным ядрам, среди которых могут оказаться и те, производительность которых в этот момент снижена. Также было бы интересно изучить как Turbo Core сочетается с функциями энергосбережения. Настолько подробное тестирование не входило в программу нашего ознакомительного материала, поэтому на сей раз Turbo Core была деактивирована, как и энергосберегающие технологии процессоров Intel и AMD во избежание влияния на производительность системы.

    Также нелишним будет упомянуть, что процессор Phenom II X6 стал базой новой топовой платформы AMD, получившей название Leo. В полном виде платформа выглядит так: Phenom II X6 + материнская плата на основе чипсета AMD 890FX/890GX/870 c южным мостом SB850 + видеокарта Radeon HD 5870. Что и говорить, система выходит достаточно мощная, и вдобавок поддерживающая различные перспективные технологии. Материнские платы поддерживают стандарты USB 3.0 и SATA 3.0, видеокарта обеспечивает вывод изображения на несколько мониторов (ATI Eyefinity), новые процессоры должны принести значительный прирост производительности в многопоточных приложениях. В общем, у AMD действительно есть все, чтобы порадовать пользователя.

    Обратите внимание, официально ни один процессор AMD не работает с памятью DDR3-1600, в спецификациях четко прописан максимум: «двухканальная память DDR3-1333 МГц». Указывая такую частоту памяти на своих слайдах, AMD напоминает нам о технологии BEMP (Black Edition Memory Profiles) – аналоге всем известных XMP от Intel и EPP от nVidia.

    Тестовый стенд и методика тестирования

    Тестовый стенд AMD:
    • Материнская плата: ASUS M4A89GTD PRO/USB3 (BIOS 1207);
    • Процессоры: AMD Phenom II X6 1090T, AMD Phenom II X4 965;
    • Система охлаждения процессора: ICE HAMMER IH-4500;
    • Оперативная память: Corsair TR3X6G1600C7 (DDR3-1600, 7-7-7-20-41-2T, 2x2 Гбайта, двухканальный режим);
    • Корпус: открытый стенд.
    Тестовый стенд Intel:
    • Материнская плата: Gigabyte X58A-UD7 (BIOS F3 от 29.01.2010);
    • Процессор: Intel Core i7 920;
    • Система охлаждения процессора: Cooler Master Hyper N620;
    • Оперативная память: Corsair TR3X6G1600C7 (DDR3-1600, 7-7-7-20-41-2T, 3x2 Гбайта, трехканальный режим);
    • Видеокарта: ATI Radeon HD 5870 (ASUS EAH5870 reference)
    • Жесткий диск: Western Digital WD1001FALS (1000 Гбайт);
    • Блок питания: Cooler Master Real Power M1000 (1 кВт);
    • Корпус: открытый стенд.

    Программное обеспечение: Windows Seven Ultimate x64, ATI Catalyst Driver 10.3, AMD OverDrive 3.2.1_450, CPU-Z 1.54.

    Для тестирования процессоров применялись следующие приложения:

    • 3DMark06 Professional Edition 1.1 – стандартные настройки. Учитывались результаты: Overall Score, CPU Score.
    • PCMark Vantage 1.0.2 x64 – стандартные настройки, учитывались результаты, полученные в тестированиях PCMark Suite и Memories Suite.
    • SiSoft Sandra Professional 2010 – общая производительность процессора (арифметический тест), Dhrystone ALU (арифметический тест), общая скорость криптографии.
    • Cinebench 11.5 x64 – рендеринг сцены, учитывался общий рейтинг процессора.
    • Fritz Chess Benchmark – количество операций в секунду (kilo Nods). Процессор AMD Phenom II X6 1090T выполнял алгоритм в 6 потоков. Процессоры AMD Phenom II X4 965 и Intel Core i7 920 выполняли алгоритм в 4 потока. Процессор Intel Core i7 920 с активированной функцией Hyper Threading выполнял алгоритм в 8 потоков.
    • SuperPi Mod 1.5 – учитывалось время, необходимое для вычисления 1 миллиона знаков числа Пи после запятой (Super Pi 1M)
    • 7Zip 9.13 Beta – учитывался рейтинг встроенного теста производительности (упаковка/распаковка) а также время, необходимое для упаковки/распаковки папки с разнородными файлами, общим объемом 617 МБайт. Для архивации использовался алгоритм LZMA2. Процессор AMD Phenom II X6 1090T выполнял алгоритм в 6 потоков. Процессоры AMD Phenom II X4 965 и Intel Core i7 920 выполняли алгоритм в 4 потока. Процессор Intel Core i7 920 с активированной функцией Hyper Threading выполнял алгоритм в 8 потоков.
    • WinRar x64 3.91 – учитывалось время упаковки/распаковки папки с разнородными файлами общим объемом 617 МБайт. В настройках программы был активирован режим многопоточности (multithreading).
    • TmpgEnc 4.0 Express – преобразование видеоролика в формате *.mkv 1920х1080 (Full HD) в формат MPEG4 AVC 480x320 1024 Kbps. Таким образом моделировался один из вариантов прикладной задачи кодировки видео для iPhone.
    • 3DStudio MAX 2010 – рендеринг сцены. Для тестирования использовалась стандартная сцена Trees из Tutorial-файлов программы. Ввиду простоты сцены рендеринг выполнялся с максимально возможными настройками качества.
    • Adobe Photoshop CS5 – тестирование заключалось в замере времени наложения фильтра Radial Blur на изображение в формате JPEG с разрешением 183,5 MP.
    • Crysis Warhead – Framebuffer Benchmark Tool 0.29, Ambush, Dx10, установки – пресет Enthusiast, AA – 4x. Учитывались минимальный, средний и максимальный FPS.
    • Far Cry 2 – встроенный бенчмарк, Ranch Small, Dx10, установки – Ultra High, AA – 4x. Учитывались минимальный, средний и максимальный FPS.
    • Resident Evil 5 – официальный бенчмарк (бенчмарк-версия игры), Dx10, установки – High, AA4x. Учитывался средний FPS.
    • World in Conflict – встроенный бенчмарк, Dx10, пресет – Very High, AA4x. Учитывались минимальный, средний и максимальный FPS.

    Уменьшение числа ядра Thuban

    Не все процессоры автоматически можно назвать самыми лучшими только из-за того, что они оснащены максимально возможным количеством вычислительных блоков. Мы решили оценить производительность, энергопотребление и эффективность нового процессора Phenom II X6, протестировав его во всех возможных режимах ядер: с 6, 5, 4, 3, 2 и всего с одним вычислительным ядром CPU.

    Результаты наших тестов будут менее интересны тем пользователям, кто уже купил новые шестиядерные процессоры AMD, поскольку вряд ли они пойдут на отключение ядер процессора – всё же мы полагаем, что шесть ядер приобретаются по какой-то весомой причине. Однако результаты тестов довольно хорошо показывают, насколько хорошо производительность и эффективность Thuban масштабируется в зависимости от количества ядер – от нескольких ядер до полных шести вычислительных блоков. В конце концов, шесть ядер явно работают быстрее в многопоточных окружениях, но дают ли они при этом наилучшую эффективность энергопотребления? Да и переход с четырёх на шесть ядер может оказаться не таким ощутимым, как с двух на четыре.

    Оценка различий между четырьмя и шестью ядрами имеет смысл и с другой перспективы. Как вы уже могли видеть в нашей статье "Разблокирование AMD Phenom II X4 960T: превращаем четыре ядра в шесть ", существует возможность разблокировать процессоры AMD, чтобы получить дополнительные вычислительные ядра. Конечно, будут разблокированные процессоры стабильно работать или нет – уже другой вопрос, поскольку шестиядерный CPU часто превращают в четырёхъядерный из-за дефектов в отключённых ядрах. Поэтому не забывайте провести расширенное тестирование стабильной работы, прежде чем использовать такую систему в играх и приложениях.

    Реализация Turbo Core и материнские платы


    В нашем обзоре процессора AMD Phenom II X6 и платформы 890FX приведены все детали о последнем флагмане AMD, так что мы рекомендуем ознакомиться со статьёй, если вы ещё этого не сделали. Кроме того, чуть выше мы уже упоминали статью, посвящённую разблокированию ядер четырёхъядерного Zosma , чтобы превратить его в шестиядерный Thuban.

    Наш процессор должен быть хорошо вам знаком: AMD предлагает две версии, а именно Phenom II X6 1090T на 3,2 ГГц и 1055T на 2,8ГГц. Оба базируются на шестиядерном дизайне Thuban, который оснащён 512 кбайт кэша L2 на каждое ядро и общим кэшем L3 объёмом 6 Мбайт. Кросс-коммутатор обеспечивает доступ к двухканальному контроллеру памяти DDR3 и каналу HyperTransport, соединяющему CPU и чипсет.

    Все новые четырёхъ- и шестиядерные процессоры (Zosma и Thuban) поддерживают функцию AMD Turbo Core, которая динамически разгоняет процессор выше уровня номинальной тактовой частоты. Уровень разгона зависит от нагрузки на CPU, при этом неиспользуемые ядра автоматически не замедляются. Но данная функция всё равно весьма полезна, поскольку она даёт прирост на несколько сотен мегагерц в ситуациях с пиковой нагрузкой на несколько ядер, при условии, что не превышается тепловой пакет.

    Реализация Turbo Core

    Выключение отдельных ядер означает, что у нас появляется больший резерв по тепловому пакету, чтобы функция Turbo Core срабатывала чаще. И в приложениях, которые не оптимизированы под многопоточность, мы потенциально должны заметить какие-либо преимущества. В таких случаях функция Turbo Core будет включаться и ускорять одно или два ядра до максимальной частоты. К сожалению, мы не получили подтверждения такового прироста в тестах.

    Материнские платы

    Хотя технически все материнские платы Socket AM3 способны запускать процессоры с меньшим числом ядер, мы хотели использовать решение на новейшем чипсете 890FX. На наших страницах уже был опубликован обзор нескольких материнских плат на чипсете 890GX с интегрированной графикой, а совсем недавно вышел сравнительный обзор разных моделей на 890FX . Мы решили использовать материнскую плату Asus Crosshair IV Formula, которая входит в тестовый набор, разосланный AMD по редакциям для тестов процессора Phenom II X6. Но нам ещё предстоит увидеть, какое количество материнских плат Socket AM3 оснащены необходимыми функциями BIOS для отключения отдельных вычислительных ядер. Если судить по материнским платам Intel Socket LGA 1366, то там существует крайне мало комбинаций плата/BIOS, которые позволяют выставлять произвольное количество активных ядер CPU.



    Нажмите на картинку для увеличения.

    Мы использовали материнскую плату Asus 890FX Crosshair IV Formula, которая позволяет произвольно выставлять количество активных ядер CPU.

    Тестовая конфигурация

    Аппаратное обеспечение
    Материнская плата (Socket AMD3) Asus Crosshair IV Formula (Rev. 1.0), чипсет: AMD 890FX, BIOS: 0701 (04/02/2010)
    CPU AMD I AMD Phenom II X6 1090T (45 нм, 3,2 ГГц, 6x 512 кбайт кэша L2 и 6 Мбайт кэша L3, TDP 125 Вт, Rev. C3)
    Память DDR3 2x 2 Гбайт DDR3-1333 (OCZ3G2000LV4GK 8-8-8-24)
    Видеокарта Sapphire Radeon HD 5850, GPU: Cypress (725 МГц), видеопамять: 1024 Мбайт GDDR5 (2000 МГц), потоковые процессоры: 1440
    Жёсткий диск Western Digital VelociRaptor, 600 Гбайт, 10 000 об/мин
    Блок питания PC Power & Cooling, Silencer 750EPS12V 750 Вт
    Системное ПО и драйверы
    Операционная система Windows Ultimate x64, обновлена 2010-03-03

    Тесты и настройки

    Кодирование аудио
    iTunes Version: 9.0.3.15
    Audio CD ("Terminator II" SE), 53 min.
    Convert to AAC audio format
    Lame MP3 Version 3.98.3
    Audio CD "Terminator II SE", 53 min
    convert wav to mp3 audio format
    Command: -b 160 --nores (160 kbps)
    Кодирование видео
    Handbrake CLI Version: 0.94
    Video: Big Buck Bunny (720x480, 23.972 frames) 5 Minutes
    Audio: Dolby Digital, 48000 Hz, 6-Kanal, English
    to
    Video: AVC1 Audio1: AC3 Audio2: AAC (High Profile)
    Mainconcept Reference v2 Version: 2.0.0.1555
    MPEG2 to H.264
    MainConcept H.264/AVC Codec
    28 sec HDTV 1920x1080 (MPEG2)
    Audio:
    MPEG2 (44.1 kHz, 2 Channel, 16 Bit, 224 kbps)
    Codec: H.264 Pro
    Mode: PAL 50i (25 FPS)
    Profile: H.264 BD HDMV
    7-Zip Version 9.1 beta
    LZMA2
    Syntax "a -t7z -r -m0=LZMA2 -mx=5"
    Benchmark: 2010-THG-Workload
    Winrar Version 3.92
    RAR
    Syntax "winrar a -r -m3"
    Benchmark: 2010-THG-Workload
    Winzip 14 Version 14.0 Pro (8652)
    WinZIP Commandline Version 3
    ZIPX
    Syntax "-a -ez -p -r"
    Benchmark: 2010-THG-Workload
    Autodesk 3d Studio Max 2010 Version: 10 x64
    Rendering Space Flyby Mentalray (SPECapc_3dsmax9)
    Frame: 248
    Resolution: 1440 x 1080
    Cinebench 11.5 Version 11.5 Build CB25720DEMO
    CPU Test single and multi threaded
    Adobe Photoshop CS 4 (64-Bit) Version: 11
    Filtering a 16 MB TIF (15000x7266)
    Filters:
    Radial Blur (Amount: 10; Method: zoom; Quality: good)
    Shape Blur (Radius: 46 px; custom shape: Trademark sysmbol)
    Median (Radius: 1px)
    Polar Coordinates (Rectangular to Polar)
    Adobe Acrobat 9 Professional Version: 9.0.0 (Extended)
    == Printing Preferenced Menu ==
    Default Settings: Standard
    == Adobe PDF Security - Edit Menu ==
    Encrypt all documents (128 bit RC4)
    Open Password: 123
    Permissions Password: 321
    Microsoft Powerpoint 2007 Version: 2007 SP2
    PPT to PDF
    Powerpoint Document (115 Pages)
    Adobe PDF-Printer
    Fritz Fritz Chess Benchmark Version 4.3.2
    3DMark Vantage Version: 1.02 Patch 1901
    Options: Performance
    Graphics Test 1
    Graphics Test 2
    CPU Test 1
    CPU Test 2
    PCMark Vantage Version: 1.0.2.0 Patch 1901
    PCMark Benchmark
    Memories Benchmark
    SiSoftware Sandra 2010 Version: 2010.1.16.10
    Processor Arithmetic, Cryptography, Memory Bandwith

    Результаты тестов


    Все тесты АЛУ Sandra 2010 Pro показывают, что добавление каждого ядра увеличивает общую производительность пропорционально производительности одного ядра за некоторым исключениями. Два ядра дают более чем 2X прирост производительности.




    Тест шифрования SHA256 вновь демонстрирует, что два ядра работают исключительно хорошо. Возможно, это связано с реализацией Turbo Core.

    Тест пропускной способности памяти показывает, что четырёх ядер достаточно, чтобы максимально нагрузить контроллер памяти DDR3.


    Тест GPU упирается в производительность видеокарты Radeon HD5850, которую мы использовали.

    Общий результат отражает оба теста – графическая производительность заметно увеличивается, когда используется два или большее количество ядер.


    Тест PCMark Vantage не выполнился полностью, когда мы ограничили Phenom II X6 одним ядром. По общему результату видно, что чем больше ядер, тем выше производительность, но прирост не всегда большой. Помните, что PCMark – это синтетический тест, который может и не соответствовать работе повседневных приложений, но он позволяет оценить производительность системы в целом.



    7-Zip не очень хорошо работает на нечётном количестве ядер. Три или пять активных ядер не дают ощутимого прироста по сравнению с двумя или четырьмя ядрами, соответственно. Впрочем, данный архиватор выигрывает от увеличения количества активных ядер.


    Многопоточный тест Cinebench масштабируется очень хорошо, в отличие от однопоточного.

    Adobe Acrobat мог бы работать намного быстрее, если бы программа была оптимизирована под несколько вычислительных ядер. Более значительный прирост можно получить, если запустить два ядра на высоких тактовых частотах.

    Ситуация в Photoshop иная, программа приятно выигрывает от каждого ядра, хотя важно подчеркнуть, что преимущества по производительности зависят от накладываемых фильтров. Некоторые фильтры оптимизированы под многопоточность, другие – нет.

    Архиватор WinRAR оптимизирован под многопоточность, но производительность ограничивается на уровне четырёх ядер. Переход на шесть ядер даёт незначительный прирост производительности.

    Утилита WinZip, которая многими воспринимается как наиболее популярный архиватор, даёт весьма досадные результаты. Мы не видим ощутимой разницы от перехода с одного ядра на шесть. Вполне понятно, что данная утилита является однопоточной.


    Как видим, даже одна из новых версий iTunes не даёт серьёзного преимущества от увеличения числа ядер. Впрочем, на кодирование аудио уходит совсем немного времени, так что особых проблем это не вызывает.

    То же самое касается и Lame: утилита не очень хорошо масштабируется в зависимости от числа вычислительных ядер.

    Mainconcept выигрывает от всех доступных вычислительных ядер, хотя чем больше используется ядер, тем меньше становится прирост производительности.

    В Handbrake мы тоже можем наблюдать хорошую масштабируемость.

    Энергопотребление системы в режиме бездействия изменяется довольно слабо при отключении отдельных ядер. Примерно 15-20 Вт требуются видеокарте, да и энергопотребление у CPU при переходе в режим бездействия не так и велико.

    При пиковой нагрузке ситуация меняется. Каждое дополнительное ядро увеличивает суммарное энергопотребление. Впрочем, можно видеть, что чем больше ядер, тем меньше энергопотребления добавляет каждое новое ядро. Таким образом, увеличение числа ядер положительно сказывается с точки зрения пикового энергопотребления, что должно соответствующим образом повлиять на эффективность, которая выражается в производительности на ватт.


    Шесть ядер оказываются самым производительным решением при выполнении нашего тестового прогона.

    Ситуация начинает становиться интереснее: среднее энергопотребление у пяти ядер оказалось ниже, чем у четырёх ядер при выполнении нашей тестовой нагрузки.

    Суммарная затраченная энергия тоже хорошо масштабируется, при этом вполне очевидно, что конфигурации с большим количеством ядер требуют меньше энергии для выполнения нашей тестовой нагрузки.

    В итоге мы видим, что чем больше активных ядер, тем лучше производительность в расчёте на ватт (эффективность).




    Заключение

    Наше тестирование показало, что до сих пор многие рабочие нагрузки не могут использовать больше двух ядер. Программы, такие как WinZip, так и не были оптимизированы под многопоточность, что весьма досадно. Даже самый дешёвый двуядерный процессор мог бы дать значительно более высокую производительность, если бы программа была должным образом оптимизирована. То же самое касается кодировщика Lame MP3, а также Apple iTunes и Adobe Acrobat 9 – последний необходим для создания документов PDF. Поскольку компании Apple и Adobe довольно крупные и работают на рынке очень давно, то разочарование оказывается ещё более досадным.

    Но давайте вернёмся к нашему анализу масштабируемости. Выключение вычислительных ядер не снизит энергопотребление в режиме бездействия. AMD прекрасно поработала над оптимизацией энергопотребления 45-нм процессора Thuban, поскольку система потребляла те же 81-83 Вт при использовании одного или шести ядер. Но результаты при пиковой нагрузке оказались более интересными – энергопотребление, добавляемое каждым новым ядром, оказывалась меньше при увеличении их количества. В итоге пиковое энергопотребление у четырёх, пяти и шести ядер оказалось очень близко. А производительность в многопоточных приложениях заметно увеличивалась.

    По этой причине процессор AMD Phenom II X6 не только даёт прекрасную производительность благодаря шести вычислительным ядрам, но и обеспечивает увеличение эффективности энергопотребления при переходе с одного ядра на большее количество ядер, вплоть до шести. Вполне очевидно, что включение максимально возможного числа ядер максимизирует производительность на ватт или эффективность. Другими словами, если вас интересует вопрос экономии энергии, то вывод будет следующим: энергопотребление в режиме бездействия не меняется, а при увеличении числа ядер эффективность энергопотребления и производительность растут, так что никакого смысла в принудительном отключении ядер нет.

    Как правило, отсутствие новинки каждые два квартала в мире процессоростроения приводит к незамедлительной гибели компании, - утере значительной доли рынка. Это обстоятельство в компании AMD прекрасно понимают. И для того, чтоб не отдать средний и низший ценовой диапазон продукции от компании Intel она выпускает на рынок новые шестиядерные процессоры, - Phenom II X6. Увеличение количества ядер позволяет компании не увеличивать частоту работы ядер до запредельных цифр путем повышения их рабочего напряжения и, соответственно, оставаться в рамках тепловыделения до 125 Ватт.

    Новые процессоры призваны отстоять средний ценовой сегмент у компании Intel , которая пользователю в данном сегменте не предлагает ни одного шестиядерного процессора. Как показывают отзывы пользователей, новые шестиядерные процессоры отлично себя ведут в средах с поддержкой мультизадачности. В то время как приложения умеющие работать только с двух- и четырехъядерными решениями не могут оценить должным образом новинки от AMD и четырехъядерная продукция от Intel того же ценового диапазона, оказывается гораздо более производительной, нежели шестиядерники от AMD.

    Новые процессоры от AMD поддерживают так называемую технологию Turbo Core , которая позволяет увеличивать частоту работы ядер, когда нагружены не все процессорные ядра. По заявлению пользователей, новая линейка шестиядерных процессоров от AMD при повышении рабочего напряжения неплохо разгоняется до отметки в 4 Ггц, что является некоторым рекордом для продукции от данной компании.

    На сегодняшний день произведен анонс двух процессоров данного семейства: младший Phenom II X6 1055T и старший Phenom II X6 1090T. В нашем обзоре будет представлен процессор Phenom II X6 1055T, который можно уже сегодня найти в свободной продаже по всей нашей стране. Стоимость данного продукта находится ниже 250 долларов или менее 7500 рублей. В столице страны без проблем его можно приобрести за 6700 рублей. Согласитесь, заманчивая стоимость для шестиядерного процессора с 6 Мб КЭШа третьего уровня на борту?

    История процессоров Phenom II X6.

    -- картинка кликабельна --

    Архитектура ядра AMD Phenom II X6

    Многим может показаться, что во вводной части нашей статьи мы несколько лукавили относительно того, что у компании AMD нет каких-либо новых технологий, - мол, вот, шестиядерные процессоры подтверждение наличия новых перспективных решений. Несомненно, демонстрируемые вам процессоры от AMD действительно являются очень перспективными решениями, но новинками их не назовешь. У меня имеется достаточно большой опыт сборки серверов для самых различных решений, поэтому могу напомнить, что шестиядерный процессор AMD Opteron существует на рынке уже с середины прошлого года. Ядро шестиядерных процессоров AMD Opteron носит имя Istanbul. Данные процессоры имеют также 6 Мб КЭШ памяти третьего уровня на борту и могут похвастаться энергопотреблением не более 75 Ватт, как некоторые существующие новинки текущего года.

    Новые шестиядерные решения имеют ядра под названием Thuban.

    Естественно, было бы глупо полагать, что компания AMD путем обычного переименования своего топового ядра, начала бы продавать его как настольный продукт.

    -- картинка кликабельна --

    Архитектура ядра AMD Opteron - Istanbul

    На самом деле между ядрами Istanbul и Thuban имеются некоторые отличия, которые представлены на схемах строения процессоров. В первую очередь, это урезанное число шин. Вместо трех линий шин HyperTransport в ядре Istanbul, в ядре Thuban используется одна линия. Если контролер памяти ядра Istanbul поддерживает серверную регистровую оперативную память ECC, то ядра Thuban лишены данной серверной возможности. Тем не менее, по заявлению компании AMD площадь ядра новых процессоров Phenom II X6 осталась равной 346 квадратных миллиметров, именно такую площадь имеют процессоры Opteron на ядре Istanbul. Возникает справедливый вопрос: "Что собой представляют новые процессоры на ядре Thuban - урезанные ядра Istanbul или ядро четырехъядерного Debeb с добавлением двух ядер?"

    Пожалуй, на данный вопрос сегодня мы не сможем дать окончательный ответ. Для этого необходимо протестировать не одну партию процессоров на всех трех ядрах и на основе набранной статистики получить точный ответ на поставленный вопрос.

    Тем не менее, любого пользователя должен мучить ответ на вопрос: "Почему анонс шестиядерных - настолько задержался?". Ответ на данный вопрос прост. AMD не может продавать новые процессоры в старшем ценовом сегменте, - по производительности они до них не дотягивают. А для продажи в среднем ценовом сегменте, необходимо снизить количество брака на 45 нанометровой технологической линии до минимума или набрать определенное количество неликвида по ядрам Istanbul, для их последующего урезания.

    Спецификации процессоров Phenom II X6.
    1. Шесть ядер
    2. КЭШ память второго уровня: 6 x 512 KB L2
    3. КЭШ память третьего уровня: 6 MB L3
    4. Шина: HyperTransport 3.0
    5. Контролер памяти: поддержка памятей типа DDR2 и DDR3
    6. Рабочая частота: 2.8 GHz
    7. Скорость обмена шины: 4.0 GT/s
    8. Сокет: AM3
    9. Технологический процесс: 45nm SOI
    10. Тепловыделение: 125W
    11. Рабочее напряжение: 1.125-1.40V
    12. Максимальная температура: 62 C
    13. Технологии:
    - AMD Balanced Smart Cache
    - AMD Dedicated Multi-cache
    - AMD Virtualization (AMD-V)Technology
    - AMD PowerNow 3.0 Technology
    - AMD Dynamic Power Management
    - Multi-Point Thermal Control
    - AMD CoolCore Technology
    - AMD Turbo CORE Technology

    Особенностью новых процессоров является их "старые" преимущества. В частности полная совместимость с сокетными платформами AM2+ и AM3 , что позволяет домашнему пользователю путем обыкновенной перепрошивки БИОСа материнской платы установить современный шестиядерный продукт.

    Тепловыделение тестируемого процессора не превышает 125 Ватт , что достаточно много для домашнего процессора по современным меркам. Понимая это, AMD начать поставки 95 Ваттных шестиядерных продуктов в ближайшее время. Очень хочется надеяться, что "ближайшее время" - будет действительно скорым. Справедливости ради хочется отметить, что 95 ваттные версии процессоров AMD Phenom II X6 1055T уже анонсированы. Как всегда распознать их можно по серийным номерам на теплораспределительной крышке. Если 125 ваттные версии имеют маркировку HDT55TFBK6DGR, то у 95 ваттных буквы "FB" заменены на "WF" и имеют следующий вид: HDT55TWFK6DGR.
    Более подробно об изменениях маркировок я советую интересоваться прямо на сайте компании AMD.

    -- картинка кликабельна --

    Упомянутая в начале статьи технология от AMD Turbo Core является аналогом технологии Turbo Boost от компании Intel. Данная технология позволяет увеличивать тактовую частоту ядер процессора, при частичной их загруженности. Это позволяет увеличить производительность процессора при сохранении его энергопотребления и тепловыделения на заявленном уровне. Технология Turbo Core призвана обеспечить высокую производительность шестиядерного продукта в программных продуктах, которые не имеют полноценной поддержки мультизадачности на сегодняшний день.

    В процессорах решение об увеличении частоты ядер увеличивается на основе данных получаемых технологией Cool"n"Quiet, которая призвана понижать множитель ядра при уменьшении нагрузки на него. Как только становится ясно, что технология Cool"n"Quiet сработала сразу на трех ядрах, происходит увеличение частоты работы оставшихся ядер на 500 Мгц. Естественно, ни о каком увеличении частоты не пришлось бы говорить без увеличения их рабочего напряжения, поэтому технология AMD Turbo Core увеличивает рабочее напряжение на 0,15 вольт. К сожалению, у процессоров AMD Phenom II X6 нет возможности управлять напряжением каждого ядра по отдельности, поэтому на 0,15 вольт увеличивается напряжение на всех шести ядрах, что сводит на нет экономию электричества во время запуска технологии Cool"n"Quiet на не нагруженных ядрах.

    К сожалению, врятли у AMD на сегодняшний день имеется работающая технология раздельного контроля напряжений на ядрах или, хотя бы технология по полному отключению ядер в рамках Cool"n"Quiet, но зато существующие процессоры полностью совместимы с сокетами AM2+ и AM3, а поддержка AMD Turbo Core активируется прямо в БИОСе материнских плат.

    Комплектация.

    -- картинка кликабельна --

    Наш герой тестирования, процессор AMD Phenom II X6 1055T был приобретен в OEM комплектации. Тем не менее, в продаже чаще всего встречаются процессоры в BOX версиях, поставляемые в коробках, изображенных на рисунке. Оформление коробок у всех процессоров одинаковое, о том какой процессор находится внутри, информирует только надпись на боковой стенке. Ниже наклейки располагается окно, через которое видна теплораспределительная крышка процессора, по надписи на которой можно уточнить модель процессора и его тепловыделение.

    Если BOX вариант поставляется вместе с гарантийным талоном, наклейкой Phenom II X6 и системой охлаждения, то OEM вариант лишен всего этого.

    Внешний осмотр процессора.

    Внешне процессор ничем не отличается от аналогичных продуктов для сокета AM3 . Лишь маркировка на теплораспределительной крышке позволяет оценить его принадлежнсоть.

    На оборотной стороне процессора имеются ножки, которые характерны для всей продукции от AMD . Гнуть их не следует, так как при выпряплении они легко отламываются.

    Температурный режим работы процессора.

    Нами была собрана следующая конфигурация:
    1. Gigabyte GA-MA770T-UD3P
    2. Phenom II X6 1055T
    3. 2 х Samsung Original DDR3-1600 Mhz
    4. Sapphire Radeon HD 5870.
    5. Seagate Barracuda XT 2 Tb
    6. Блок питания FSP 650 Ватт.

    Для охлаждения во время тестов был использован известный по нашим тестированиям кулер OCZ Vendetta , который уже в течение года охлаждал старый процессор Phenom II X4.


    Мы несколько раз перепроверяли получаемые температурные значения при нагрузке программным продуктом Prime95 и действительно, температура процессора не выходила за рамки 34 градусов. Единственное следует отметить, что в комнате на момент тестирования было порядка 20 градусов, - кондиционер трудился на ура. Разгон процессора AMD Phenom II X6 1055T.

    Для начала следует отметить, что разгонять процессоры очень легко. Главное наличие современной материнской платы с хорошим набором возможностей для разгона через БИОС, в противном случае придется довольствоваться программным продуктом от AMD OverDrive.

    -- картинка кликабельна --

    Данная программа позволяет разгонять процессор прямо в операционной системе и сбивать достигнутый разгон при перезагрузке компьютера. Естественно, вы можете каждый раз запускать данную программу для подгруздки профиля разгона, но я рекомендую после получения точной частоты работы вашего процессора, я рекомендую перенести эти данные в БИОС материнской платы, чтоб система сразу начинала работать на повышенных частотах.

    Уже почти два года назад на был представлен алгоритм разгона процессоров, как ни странно, - этот алгоритм совсем не изменился. Это связано с тем, что тактовая частота процессоров так и формируется путем умножения множителя процессора на частоту тактового генератора.

    Также как и раньше, множители у многих процессоров фиксированы. У нашего процессора AMD Phenom II X6 1055T он фиксирован в сторону повышения на значении 14x, а вот у топового процессора Phenom II X6 1090T он не фиксирован и может изменяться в сторону повышения. Базовая частота тактового генератора шины равняется 200 Мгц, соответственно, при умножении 14 на 200 Мгц мы получаем 2800 Мгц, - частоту работы нашего процессора.

    Тестируемый процессор при переходе в описанный выше режим AMD Turbo Core повышает частоту работы части ядер на 500 Мгц, то есть часть ядер работает на частоте 3,2 Ггц. Как же достигается данная частота?

    Очень просто, технология AMD Turbo Core повышает множитель оставшихся ядер до 16,5х и добавляет 0,15 вольт на каждое ядро. Наличие данной технологии очень интересно для каждого оверклоккера, так как она практически гарантирует конечному пользователю то, что его процессор будет работать на частоте 3,2 Ггц в любом случае, главное обеспечить наличие хорошей материнской платы и системы охлаждения.

    -- картинка кликабельна --

    Так как множитель в нашем процессоре фиксирован, мы будем его разгонять путем повышения частоты тактового генератора, которая по умолчанию равняется 200 Мгц . В БИОСе материнских плат она фиксируется как CPU Bus Frequency.

    Как правило, подобный разгон требует от пользователя, чтоб он помнил, что увеличивая частоту шины он увеличивает и частоту работы оперативной памяти, и частоту работы контроллеров материнской платы. Если частоту работы оперативной памяти мы еще как-то сможем откорректировать, то максимальная частота работы контроллеров материнской платы зависит только от нее и именно в этом кроется разгонный потенциал материнской платы.

    Частоту работы оперативной памяти можно изменять в разделе БИОСа DRAM Frequency . Вы по умолчанию выставляете частоты 800, 1067, 1333 или 1600 МГц, тем не менее, вы должны помнить, что вы устанавливаете не частоту, а делитель частоты памяти. Не плохо было бы зафиксировать тайминги работы памяти, которые контроллеры памяти процессоров любят менять, в зависимости от выбранного делителя работы памяти.

    -- картинка кликабельна --

    Следующим моментом является увеличение напряжения работы процессора . При решении данного вопроса, главное не выходит за рамки "дозволенного" и обеспечить качественное охлаждение процессора. У тестируемого процессора мы увеличили напряжение работы с 1,3 вольт до 1,45 вольт. Некоторые оверклоккеры любят повышать напряжение работы северного моста интегрированного в процессор, я данную методику не люблю, в связи с низкой ее эффективностью.

    Достаточно актуальным остается вопрос повышения напряжения работы оперативной памяти . В каждом случае необходимо подходить индивидуально к данному вопросу. Все зависит от итоговой частоты, которую вы получите в результате разгона процессора и, как правило, это является следующим этапом в разгоне всей системы.

    Для неопытных пользователей и при "апробировании" процессора я рекомендую отключать технологию AMD Turbo Core . Зачем нам она нужна, если наш разогнанный процессор и так будет работать на предельной своей частоте?

    Современные материнские платы имеют прочие особенности и тонкости для разгона компонентов системы, на них мы заострять ваше внимание не будем, - в виду их индивидуальности.

    Наша материнская плата гарантированно трудится на частотах до 334 Мгц , поэтому в ее возможностях по разгону данного процессора мы были уверены. Должны отметить, что к нам в руки попал достаточно удачный экземпляр, который при напряжении в 1,45 вольт загружал операционную систему Windows 7 на частоте в 4,2 Ггц.

    Но на данной частоте тесты Prime95 он не проходил, абсолютно стабильной частотой при данном напряжении оказалась цифра в 4,12 Ггц , что является очень хорошим показателем по моим меркам.

    Тестирование уровня производительности.

    К сожалению, на сегодняшний день мы владеем не таким большим набором замеров уровней производительности процессоров. Поэтому конкурентами новому решению от AMD выступят два процессора, - один от Intel, второй от AMD: Core i7 920 и Phenom II X4 965.


    1. Синтетический тест SiSoftware Sandra 2010 Multimedia Processor Test.


    Из результатов тестирования видно, что в мультимедийном тесте, который поддерживает многопоточность преимущество шестиядерного решения от AMD на лицо, о чем мы и говорили в теоретической части нашей статьи.


    В ходе тестирования был выбран режим Entry с разрешением 1024x768. Из результатов тестирования четко видно, что игровой синтетический тест, который более приближен к реальности не может отдать преимущество новому процессору от AMD, - четырехъядерный продукт от Intel его опережает. Тем не менее, протестированный процессор выглядит намного лучше предыдущего топового решения Phenom II X4 965.

    3. Игровой тест Crysis Warhead.


    Данная игра яркий пример того, когда приложение не поддерживает мультипоточности, - она умеет работать с одним, двумя, четырьмя ядрами, но не более. Это приводит к тому, что никакие технологии вроде AMD Turbo Core, не помогают шестиядерному решению показать высокую производительность, - в результате чего мы получаем последнее место в ходе проведенного тестирования.

    Заключение.
    Естественно, проведенного объема тестирования мало для создания полного представления о процессоре. Но трех данных тестов вполне достаточно, чтоб создать о нем четкое мнение для себя. Шестиядерный процессор интересен со всех точек зрения, - энергопотребления, разгонного потенциала, работоспособности. Да, он уступает четырехядерным решениям в играх, но он превосходит их в ходе конвертации видео, архивировании и других задачах, где уже мультипоточность реализована в полной мере.

    Новый процессор Phenom II X6 1055T нам очень понравился с точки зрения разгонного потенциала. Конечно, не каждый процессор разгонится до таких частот, но по уже имеющейся статистике 85% из них покоряют цифру в 3,8 Ггц.
    Наш портал присуждает данному процессору золотую медаль, как оптимальный продукт в соотношении производительность/цена.